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Abstract

Feature importance explanation, which highlights input features

that are most influential to the output, is a popular explainable AI

(XAI) technique to help users understand machine learning model

predictions. However, features deemed predictive by machines can

still be puzzling or even appear unintuitive to end-users. Explaining

why a feature is predictive is an underexplored area in current XAI

research. In this paper, we used deception detection as a case study.

We leveraged a large language model (LLM) to explain why a word

is predictive of genuine or deceptive reviews. We first validated the

LLM-generated explanations to be non-hallucinated through an

algorithmic evaluation. Then, we conducted a crowdsourced study

(𝑁 = 220) to investigate how unintuitive words and LLM-generated

explanations influence participants in a deception detection task.

Our study results found that showing unintuitive features without

explaining why they are predictive was no better than not showing

them at all, while explaining why these features are predictive sig-

nificantly enhanced participants’ learning of the task, appropriate

reliance on AI assistance, and perceptions of the AI system.

CCS Concepts

• Human-centered computing→ User studies; • Computing

methodologies→ Machine learning.
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1 Introduction

Explainable artificial intelligence (XAI) research has proposed a va-

riety of approaches for helping users understand machine learning
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model predictions. One simple yet effective approach is to show

which parts of an input (i.e., which features) are most influential

to the prediction output. This approach is known as feature im-
portance explanation. Previous research has developed a variety of

algorithms to identify important features [51, 62, 69]. Studies have

also empirically shown that feature importance explanations can

improve end-users’ performance on AI-assisted decision-making

tasks [2, 45] and understanding of the AI system [15, 59].

Despite these promising results, studies on feature importance

explanations have often ignored an important problem: features

deemed important by a machine learning model may not always

make sense to humans. We refer to these cases as unintuitive

features. In this paper, we focus on unintuitive text features—

words that are strongly associated with a label but are at odds with

human intuition and common sense. For example, one prior study

found that the word “Chicago” is a strong predictor of a hotel review

being deceptive [44]. Even in a simpler task like sentiment analysis

(i.e., predicting whether a product review is positive or negative),

some word-sentiment relations can still appear incomprehensible

(e.g., the word “problems” is counterintuitively predictive of positive
sentiment [61]).

A user may naturally wonder:What makes an unintuitive feature

predictive? There are two possible explanations. First, an unintu-

itive feature may be predictive due to anomalies in the training data

and over-fitting. Second, an unintuitive feature may be predictive

because it is associated with an underlying language phenomenon
that may not be immediately obvious. For example, in the context of

product reviews, the word “problems” is predictive of positive senti-

ment because of colloquial expressions like “no problems” or “with-

out any problems”. Similarly, in the context of deception detection,

the word “Chicago” is predictive of a hotel review being fake be-

cause fake review writers tend to mention city names (e.g., “best in

Chicago”). While machines learn from statistical patterns, humans

understand language through context and prior experience [33, 67].

Without sufficient context, statistically salient word-label relations

may appear unintuitive to humans. Most XAI research on feature

important explanations do not further explain why a feature is

predictive. This is the challenge addressed in this study.

When left unexplained, unintuitive features can lead to negative

consequences. Studies have found that when no further explana-

tions are provided, end-users may conjecture their own incorrect
explanations [66], fail to realize the actual predictive power of unin-

tuitive features [61], or lose trust in the AI system [14]. Therefore,

explaining unintuitive features is an urgent problem in XAI research

and requires effort from multiple perspectives. First, from a techni-

cal perspective, we need algorithms to further explain predictive
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features that are not self-explanatory. Second, from a human per-

spective, we need to evaluate whether the generated explanations

can help end-users appreciate why a feature is predictive and learn

about the predictive task. Previous work has explored explaining

unintuitive words using nearby words [34, 61, 63] and considering

their interactions with other words in a sentence [6, 35, 72]. While

these methods can reveal language patterns in local context win-

dows, such as negations and colloquial expressions, they may fail

to reveal more complex phenomena that go beyond local context.

Motivated by this, we aimed to develop a computational tool that

can explain the complex language phenomena behind unintuitive

words and evaluate the tool through a user experiment. To this end,

we used deception detection as a case study—predicting whether a

hotel review is genuine or deceptive. While fake review detection

is a challenging task for laypeople [4], classical machine learning

models like logistic regression perform reasonably well [44]. We

prompted a large language model (LLM) to conjecture the under-

lying language phenomena that explain why a word is predictive

of a review being genuine or deceptive. After validating that the

LLM-conjectured phenomena reflected patterns grounded in data,

we conducted a crowdsourced study (𝑁 = 220). In our study, partic-

ipants were randomly assigned to one of five interface conditions

(a between-subjects design). Interface conditions varied based on

the AI assistance available to participants. The control condition

only displayed AI predictions, while the other four treatment condi-

tions provided different types of explanations for predictions. The

explanations varied along two dimensions—(1) only with respect

to the predicted label vs. both labels and (2) only highlighting pre-

dictive words vs. highlighting predictive words and showing their

associated LLM-conjectured phenomena. Our study investigated

three research questions (RQs):

• RQ1: How does the interface condition affect participants’

learning of the deception detection task?

• RQ2: How does the interface condition affect participants’

reliance on the provided AI assistance?

• RQ3: How does the interface condition affect participants’

perceptions of the provided AI assistance?

Our study involved two phases: the main task and learning as-

sessment. The goal of the main task was to train participants to

detect deceptive hotel reviews by interacting with an AI system.

During the main task, participants completed eight trials. During

each trial, participants judged whether a Chicago hotel review was

genuine or deceptive. Participants completed judgments in three

steps: (1) making their own judgment without any AI assistance;

(2) seeing the predicted label along with the AI assistance features

associated with the assigned interface condition and possibly up-

dating their judgment; and (3) seeing the correct ground-truth label.

Then, participants proceeded to the learning assessment. The goal

of this phase was to assess their learning of the task. In this phase,

participants judged six reviews for hotels in other cities. While the

main task had an interface manipulation, all participants during

the learning assessment were exposed to the same interface con-

dition that did not provide any AI assistance. Finally, participants

completed a post-task survey asking about their perceptions of the

AI system and their experiences during the study.

Our paper makes the following contributions.

• We developed a conjecture-then-validate algorithmic pipeline

that leverages LLMs to explain predictive yet unintuitive features

in XAI, using deception detection as a case study. LLMswere used

to conjecture complex language phenomena that go beyond local

context to explain unintuitive features. Then, these conjectured

phenomena were validated to ensure they were not hallucinated

but reflected actual data patterns.

• Our large-scale crowdsourced study found that LLM-generated

explanations were helpful to users. Showing unintuitive fea-

tures without explaining why they were predictive was no better

than not showing them at all. In contrast, explaining why these

features were predictive significantly helped participants learn

about the deception detection task, develop appropriate reliance

on AI, and improve overall perceptions of the system. Our find-

ings highlight the importance of aligning machine-generated

explanations with human intuition to facilitate effective

human-XAI interaction.

2 Related Work

Our research builds upon three areas of prior work: (1) approaches

for generating feature importance explanations, (2) approaches for

explaining unintuitive text features, and (3) empirical user studies

that evaluated XAI systems.

Feature Importance Explanations: XAI research has pro-

posed a variety of techniques to help users understand AI predic-

tions [40, 51, 62, 69, 77]. Feature importance (or feature attribution)

explanation is a popular approach that identifies which parts of

the input are most influential to the prediction [51, 62, 69]. In XAI

research, explanations can be categorized as either global expla-
nations that provide insights about the general behavior of the

model, or local explanations that explain how the model works on

individual instances [21]. This distinction also applies to feature

importance explanations. Global feature importance explanations

reveal the impact of features across predictions [19, 26], while local

feature importance explanations identify influential features for a

specific instance [51, 62, 69]. In our study, we trained logistic regres-

sion classifiers and used regression coefficients as global feature

importance explanations.

Both global and local feature importance explanations share the

same idea: “feature 𝑥 plays an important role in predicting label 𝑦”.

However, predictive features are not always self-explanatory. For

example, studies have reported predictive but unintuitive features

in healthcare [12], econometrics [24] and psychology [36]. In this

paper, we focused on predictive but unintuitive text features (words).

This issue is not uncommon in prior XAI research. For example, the

word “problems” is predictive of positive sentiment [61]; the word

“Chicago” is predictive of deceptive reviews [44]; the word “host” is

predictive of Atheism over Christianity [62]. Without proper clari-

fication for predictive yet unintuitive features, studies have found

that users: (1) made up their own incorrect explanations [66], (2)
failed to realize the actual predictive power of these words [61], and

(3) lost trust in the AI system that highlighted predictive words [14].

Explaining Unintuitive Text Features: The sparsity and high-

dimensionality of text data pose unique challenges in explaining the

predictiveness of unintuitive words. To this end, previous research
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has proposed different heuristic approaches for explaining unintu-

itive words, e.g., curating explanations from domain knowledge of

linguistic cues [44, 48], showing distributions of word-label rela-

tions in the training data [42, 61], and displaying instances where

the word and label co-occur [61]. Additionally, previous research

has also developed algorithms to explain unintuitive words, such

as showing nearby words of the unintuitive word [34, 61, 63] and

considering their interactions with other words [6, 35, 72]. The core

idea of these algorithms is that contextual information can help

explain the underlying phenomenon associated with a predictive

yet unintuitive word. However, word-label relations can become

more abstract in complex tasks and mere contexts are insufficient.

This has inspired us to develop new tools.

Our proposed solution builds upon the emerging trend of apply-

ing LLMs in XAI research. LLMs have shown strong performance

in a variety of machine learning and natural language processing

tasks [79]. Thus, previous research has explored applying LLMs in

XAI research, which mainly follows two directions. One research di-

rection is to use LLMs as explainers. This line of work has leveraged
LLMs to explain data graphs by uncovering hidden yet important

trends [5, 46], and to explain machine learning model predictions

by highlighting the most important features [41, 53]. Studies have

shown that LLMs were able to identify important features as ac-

curately as prevalent feature attribution techniques if provided

with sufficient data and prompt engineering [41]. Besides being

explainers, LLMs have also been used as translators for existing XAI
techniques, with the primary goal of augmenting the readability of

explanations. For example, studies have explored prompting LLMs

to verbalize important features learned in text data [25, 56], tabular

data [52, 82] and image data [52, 71] into coherent natural language

narratives. However, these natural language explanations are still

paraphrasing important features, without further explaining why

they are important. In this paper, we prompted an LLM to conjec-

ture the underlying phenomena from words that are predictive of

genuine or deceptive reviews. Instead of paraphrasing feature-based
explanations to natural language explanations, our approach ele-
vating low-level word features into higher-level phenomena-based

explanations. We elaborate more on this in Section 3.2.

Empirical Studies in XAI: Conducting empirical studies with

human end-users is a common approach for evaluating XAI sys-

tems, as it provides direct evidence on the effectiveness of ex-

planations [43, 80]. To this end, numerous user studies have

been conducted. Most studies have adopted a similar design—end-

users interacted with an XAI system (e.g., showing important fea-

tures [11, 15, 44, 45] or similar examples [10, 13, 76]) to accomplish

a specific task, such as sentiment analysis [2], topic categoriza-

tion [59], and deception detection [44, 45]. When evaluating the

effects of XAI systems on end-users, studies typically focused on

what to evaluate and how to evaluate [43]. For example, studies

have conducted quantitative evaluations with respect to (1) the task
(e.g., efficacy [2, 11, 44, 45, 59] and efficiency [11, 15, 59]), (2) the AI
(e.g., users’ trust [10, 15, 45, 76] and understanding [15, 17, 59] of

the AI), and (3) the end-users (e.g., behavioral patterns [2, 11, 59]).
Besides quantitative evaluations, qualitative studies have delved

deeper into human-XAI interaction, such as users’ mental models

and cognitive activities [10, 28, 60].

In our study, we conducted quantitative evaluations with respect

to the task, AI, and end-users to understand the effects of unintuitive

features and LLM-generated explanations. Notably, we investigated

a novel aspect (RQ1): can XAI systems facilitate users’ learning of

a complex task? While prior studies have largely focused on users’

task performance with in-situ XAI assistance [2, 11, 44, 45, 59],

few have investigated the subsequent impact after the assistance

becomes unavailable. Helping users assimilate new knowledge,

however, is an important educational objective in developing XAI

systems [21]. Therefore, our RQ1 investigated whether an XAI sys-

tem could perform as an instructor instead of merely an assistant.

To address this, our study proceeded in two phases. During the main

task, participants interacted with an XAI system to learn how to dis-

tinguish between genuine and deceptive hotel reviews. During the

learning assessment task, participants labeled reviews as genuine

versus deceptive independently. It is notable that such workflow

has been used to assess users’ understanding of AI systems in prior

studies (i.e., simulating AI behaviors post-interaction) [9, 17]. In

our study, we adapted it to evaluate participants’ learning of the

deception detection task. Participants were instructed to make the

correct judgment instead of simulating the AI.

3 Methods

3.1 Study Overview

To investigate our RQs, we conducted a crowdsourced study using

the Prolific platform. Our study involved 220 participants (𝑀 = 121,

𝐹 = 98, 𝑈𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 = 1). Participants’ ages ranged from 19 to 71

(𝑀𝑒𝑎𝑛 = 37.35, 𝑆.𝐷. = 11.23). We restricted our study to English-

speaking Prolific workers from USA, UK, and Canada who had

completed at least 100 tasks with an acceptance rate ≥ 95% and had

experience in online hotel booking.

Our study involved two phases: the main task and learning as-

sessment. We designed the main task as a phase where participants

could learn to detect deceptive hotel reviews by interacting with

an AI system. During the main task, participants were exposed

to eight reviews for Chicago hotels. For each review, participants

were asked to judge whether the review was genuine or deceptive.

Participants were randomly assigned to one of five interface con-

ditions (i.e., a between-subjects design) that provided different AI

assistance features. The learning assessment phase was designed to

test participants’ learning. During the learning assessment phase,

participants were asked to judge six reviews for hotels in other

cities. We decided to use reviews from other cities to test partici-

pants’ ability to use what they learned in a novel context, which is

evidence of deeper learning. All participants were exposed to the

same interface that did not provide any AI assistance. Finally, par-

ticipants completed an exit survey about their experiences during

the study. Participants were given US$ 5.5 for participating in the

study and an additional US$ 0.2 for each correct judgment during

the learning assessment phase. The study was approved by our

Institutional Review Board (IRB).

3.2 An LLM-based Approach for Explaining

Unintuitive Words

Data Preparation: The dataset used in the main task of our study

originated from Ott et. al [54, 55], which contains 800 genuine and
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800 deceptive reviews for Chicago hotels. Genuine hotel reviews

were collected from verified travelers while deceptive reviews were

written by crowdsourced workers. Given the limited size of the

dataset, we performed 10-fold cross validation to ensure optimal

use of all the reviews. The data was prepared as follows. For each

training fold, we trained a logistic regression classifier, identified

the most predictive words, and leveraged an LLM to conjecture the

underlying phenomena associated with these predictive words. For

each corresponding testing fold, we applied the trained classifier

to predict whether each hotel review in the test set is genuine or

deceptive and validated the conjectured phenomena as described

in Section 4.1.

Identifying Predictive Words: We trained logistic regression

classifiers using a unigram TF-IDF representation with stopwords

removed [3, 58] and the classifiers achieved an average F1-score

of 0.88. Similar to previous XAI studies that used unigram text fea-

tures [11, 44, 45], we identified predictive words through regression

coefficients. From a trained logistic regression classifier, we selected

the 25 words with the highest coefficients as the most predictive of

genuine reviews and the 25 words with the lowest coefficients as

the most predictive of deceptive reviews. All selected words passed

a Wald test for the significance of predictiveness.

Explaining Predictive Words: Several prior studies have also

aimed to explain why a word is predictive [6, 35, 61, 72]. How-

ever, these studies have focused on sentiment analysis—predicting

whether a review is positive or negative. These studies have ex-

plained the predictiveness of words by showing the contexts in

which they tend to appear. For example, the word “problems” is

predictive of positive sentiment because it appears in contexts such

as “no problems” and “without any problems”. Compared to senti-

ment analysis, deception detection—predicting whether a review

is genuine or fake—is a more complex task for laypeople [4]. Our

preliminary investigation results (Table A.1) suggest that using

contextual information is not enough. Instead, predictive words

in deception detection may reflect phenomena that cannot be ex-

plained by simply showing the contexts in which they frequently

occur. For instance, a system may need to explain that “spa” is

predictive of a hotel review being fake because “fake review writers

tend to overemphasize luxurious aspects of the hotel”.

To go beyond context-based explanations, we leveraged an LLM

(GPT-4o [1]) to conjecture the underlying phenomena repre-

sented by predictive words. We used the following prompt: You
trained a logistic regression model to detect deceptive
Chicago hotel reviews. Based on feature importance,
these are words predictive of genuine reviews [a
list of words] and these are words predictive of
deceptive reviews [a list of words]. Your task is
to identify language phenomena that appear in genuine
and deceptive hotel reviews and are associated with
these predictive words. Structure your analysis using
the template below for a clear and concise response:
{"Underlying phenomena for genuine reviews": {
"phenomenon 1": {"phenomenon": short phrases describing
this phenomenon, "explanation": elaboration on this
phenomenon, "predictive words": words associated with
this phenomenon"}, ...}, {"Underlying phenomena for
deceptive reviews": ... } Here, we prompted GPT-4o to

conjecture and organize phenomena directly from predictive words

without looking at any examples. We did not restrict the number

of phenomena to be conjectured. Table 1 summarizes the union of

conjectured phenomena and their associated words across all 10

training folds. Each word is associated with one phenomenon.

These LLM-conjectured phenomena are plausible, but all LLMs

are prone to hallucinations. An important question is: Are these

phenomena truly grounded in genuine and deceptive reviews? We

discuss how we validated these phenomena through an algorithmic

evaluation in Section 4.1.

3.3 Study Design

Sampling Reviews for the Study: During the main task, partic-

ipants judged eight reviews for Chicago hotels. We expected our

crowdsourced participants to have limited experience in detecting

deceptive hotel reviews. Thus, we sampled sequences of eight re-

views based on the following criteria to support their learning of

the deception detection task. First, each review was associated with

at least one predictive word for both genuine and deceptive reviews.

Second, each sequence covered all predictive words for both labels

(as shown in Table 1). Third, each sequence had four truly genuine

and four truly deceptive reviews. For each label (i.e., genuine vs.

deceptive), we sampled two reviews for which the logistic regres-

sion classifier made a correct prediction and two reviews for which

the logistic regression classifier made an incorrect prediction. In

total, we sampled 22 unique sequences without duplicate reviews

for the main task.

For the learning assessment phase, we used another dataset

containing genuine and deceptive reviews for hotels in Houston,

New York, and Los Angeles [47]. We sampled 22 unique sequences

without duplicate reviews. Each sequence had six reviews, one

genuine and one deceptive reviews for each city.

Task Allocation: We organized all sampled reviews into 22

unique batches. Each batch had a sequence of eight reviews for

Chicago hotels for the main task and six reviews for hotels in

other cities for the learning assessment task. Ten participants were

exposed to the same batch. Among these participants, two were

assigned to each of our five interface conditions during the main

task. Ultimately, we had 22 unique batches × 5 interface conditions

during the main task × 2 participants per interface condition, for a

total of 220 participants. Figure B.1 illustrates our task allocation.

Showing AI Assistance: Prior user studies on human-AI in-

teraction have adopted two paradigms when providing AI assis-

tance. One is to provide real-time AI assistance during a task for

participants to take or ignore [11, 44, 45, 59], and the other is to

provide AI assistance after a task for participants to revise their

decisions [13, 65]. Considering the task complexity, we adopted

the second paradigm. We expected that delaying the AI assistance

could nudge participants to think critically and mitigate the risk of

blind reliance. While this design does not resemble most real-world

cases of AI-assisted decision-making, it provides insights into how

participants’ behaviors shift before and after AI assistance.

3.4 Study Protocol

Our study protocol proceeded as follows. First, participants watched

an instructional video about the study. Then, participants proceeded
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Table 1: GPT-4o-conjectured phenomena from words predictive of genuine and deceptive reviews (abridged due to space limit).

Words predictive of genuine reviews Genuine phenomena conjectured by GPT-4o

floor, elevator, elevators, breakfast, coffee focusing on practical aspects of hotel amenities

small, large, bathroom, bed, upgraded paying attention to specific room details and features

Priceline, Booking, booked, rate mentioning transactional and booking details of the stay

helpful, us, concierge, conference mentioning interaction with hotel staff or specific use cases

construction, quiet mention environmental and surrounding factors of the hotel

reviews referring to other reviews for the hotel

location, Michigan, avenue, walk, street, blocks, river mentioning aspects related to the hotel’s location

Words predictive of deceptive reviews Deceptive phenomena conjectured by GPT-4o

luxury, luxurious, spa, accommodations overemphasizing the luxurious aspects and high-end services

experience, relax, relaxing, visit, staying overusing words related to personal experiences and emotions

smelled, smell, food exaggerating unusual sensory details and experiences

amazing, definitely, excellent, ever overusing superlatives and absolute terms

recently, finally claiming recent and up-to-date experience

Hilton, Millennium, Chicago, Regency mentioning well-known hotel brands or city names

husband, wife, family, vacation mentioning family members or personal events

recommend, anyone, looking using persuasive language for direct suggestions

to the main task. Participants were randomly assigned to one of five

interface conditions that varied based on the AI assistance. During

the main task, participants completed eight trials. During each trial,

participants judged whether a Chicago hotel review was genuine or

deceptive. Participants completed judgments for a review in three

steps.

First, participants read the review and made judgments using a

range slider from very deceptive to very genuine. The range slider

did not have a midpoint. Therefore, participants had to choose

between genuine or deceptive. However, they could choose values

close to the midpoint if they were unsure. Second, participants

were provided AI assistance. Participants were instructed that the

AI system could make mistakes. However, they did not know the

exact distribution of correct and incorrect cases. After scrutinizing

the AI assistance, participants were asked to either revise their

judgment using the range slider or keep their original judgment.

Finally, participants were shown a summary of their judgment and

the correct answer.

After completing all eight trials for the main task, participants

proceeded to the learning assessment task where they completed

six trials. Participants did not know the six trials were balanced be-

tween genuine and deceptive. During each trial, participants judged

a review for hotels in other cities. All participants were exposed to

the same interface that only included the review and a range slider

without any AI assistance. After completing the learning assess-

ment, participants completed a post-task survey that asked about

their perceptions of the AI system and their experiences during the

study. Our study materials and system demos are available at our

online appendix.

3.5 Post-task Survey

In the post-task survey, participants responded to agreement state-

ments on a 7-point scale ranging from (1) “strongly disagree” to

(7) “strongly agree”. The survey consists of three parts. The first

part of the survey asked participants’ trust in the AI’s prediction

(3 items), understanding of the AI’s prediction (3 items), confi-

dence in their judgments in the main task (1 item) and learning

assessment (1 item), and their perceived learning of the deception

detection task (3 items). The second part of the survey asked about

system usability. We used the 10-item System Usability Scale

(SUS) [7]. The third part of the survey asked about workload. We

used the 6-item NASA-TLX [30], which asked about participants’

mental demand, physical demand, temporal demand, failure, effort,

and frustration. Participants’ responses to the trust, understanding,

learning, and system usability items showed high internal consis-

tency (Cronbach’s 𝛼 ≥ 0.87). Therefore, we aggregated responses

within these categories to form composite measures. Participants’

responses to the workload items had medium internal consistency

(Cronbach’s 𝛼 = 0.65), so we analyzed them individually.

3.6 Interface Conditions

In the main task, participants were randomly assigned to one of

five interface conditions (i.e., a between-subjects design). Interface

conditions varied based on the AI assistance features made available

to participants. Participants completed the same task (i.e., judging

eight Chicago hotel reviews) with the same study protocol for all

conditions.

The five interface conditions consisted of one control and four

treatment conditions. The control condition only provided pre-

dicted labels from logistic regression classifiers. The four treatment

conditions included predicted labels and provided additional ex-

planations for predictions. Our four treatment conditions were

associated with a two-by-two factorial design. We manipulated two

factors. One factor manipulated the type of explanation provided—

either predictive words only (Word) or predictive words along

with the LLM-generated phenomena associated with each predic-

tive word (WordPhen). The second factor manipulated the side
of explanations provided—either explanations associated with the

predicted label only (Single) or both labels (Both).

Control: This condition only showed the predicted label.

https://jiamingqu.com/FAccT25_demo/


FAccT ’25, June 23–26, 2025, Athens, Greece JiamingQu, Jaime Arguello, and Yue Wang

Step 1: judgment without AI

Step 2: judgment with AI

Step 3: view answer

Figure 1: Main task system interface. In the main task, participants (1) made their own judgment, (2) scrutinized the AI assistant

and possibly updated their judgment, and (3) saw the correct answer. Depending on the interface condition, participants had

access to different AI assistance features. For example, the WordPhenBoth condition shown in the figure highlights predictive

words and provides LLM-conjectured phenomena for both labels. Participants can hover the mouse over predictive words to

inspect the corresponding phenomena or hover over the phenomena to inspect related words.

WordSingle: This condition showed the predicted label and

highlighted predictive words for the predicted label.

WordBoth: This condition showed the predicted label and

highlighted predictive words for both labels.

WordPhenSingle: This condition showed the predicted label,

highlighted predictive words for the predicted label, and provided

LLM-conjectured phenomena for those predictive words.

WordPhenBoth: This condition showed the predicted label,

highlighted predictive words for both labels, and provided LLM-

conjectured phenomena for those those predictive words. Figure 1

illustrates this condition.

While the main task had an interface manipulation, the learning

phase did not—participants had to classify reviews without any AI

assistance. The system interface is the same as the first step of the

main task, as shown in Figure 1.

3.7 Measures of Learning (RQ1)

In RQ1, we investigated the effects of the interface condition on par-

ticipants’ learning of the deception detection task. We developed

the following two measures to assess both objective and subjective

learning outcomes.

Judgment Accuracy: The percentage of correct judgments par-

ticipants made in the learning assessment.

Perceived Learning: The average response to the three post-

task survey items that asked about perceived learning (Section 3.5).

3.8 Measures of Reliance (RQ2)

In RQ2, we investigated the effects of the interface condition on

participants’ reliance on the AI. As shown in Table 2, we developed

five measures based on participants’ judgments during the main

task.

Similar to prior work that measured reliance through agree-

ment [2, 11, 59], we first measured participants’ tendency to rely

on the AI’s predictions from two different perspectives.

Change toward AI: Out of the trials where participants dis-

agreed with the AI first, the percentage of times they changed their

judgment to agree with the AI.

Stick with AI: Out of the trials where participants agreed with

the AI first, the percentage of times they maintained agreement

with the AI.

Previous research suggests that the quality of reliance depends

on how humans respond to correct or incorrect AI predictions [13,

38, 57, 76]. Thus, we used the following measures to investigate

whether the reliance is appropriate.

Appropriate Reliance: The percentage of times participants

either correctly agreed with the AI (i.e., the AI was correct) or
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Table 2: Measures of reliance. Notation: 𝐻 = human’s initial judgment before AI assistance, 𝐻
′
= human’s final judgment after

AI assistance, 𝐴𝐼 = AI’s prediction, 𝑇 = true label. Each takes a value in {𝐷𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒,𝐺𝑒𝑛𝑢𝑖𝑛𝑒}.
Tendency of Reliance Appropriateness of Reliance

Measure Definition Measure Definition

Change toward AI 𝑃(𝐻 ′
= 𝐴𝐼 ∣ 𝐻 ≠ 𝐴𝐼) Appropriate Reliance 𝑃(𝐻 ′

= 𝐴𝐼,𝐴𝐼 = 𝑇 ) + 𝑃(𝐻 ′
≠ 𝐴𝐼,𝐴𝐼 ≠ 𝑇 )

Stick with AI 𝑃(𝐻 ′
= 𝐴𝐼 ∣ 𝐻 = 𝐴𝐼) Over-Reliance 𝑃(𝐻 ′

= 𝐴𝐼 ∣ 𝐴𝐼 ≠ 𝑇 )
Under-Reliance 𝑃(𝐻 ′

≠ 𝐴𝐼 ∣ 𝐴𝐼 = 𝑇 )

correctly disagreed with the AI (i.e., the AI was incorrect). This is

equivalent to the participant’s accuracy during the main task.

Over-Reliance: Out of the four trials where the AI was incorrect,

the percentage of times participants incorrectly agreed with the AI

(i.e., accepted an incorrect prediction).

Under-Reliance: Out of the four trials where the AI was correct,

the percentage of times participants incorrectly disagreed with the

AI (i.e., rejected a correct prediction).

3.9 Measures of Perceptions (RQ3)

In RQ3, we investigated the effects of the interface condition on

participants’ perceptions of the AI and study experiences. We

developed the following measures for RQ3 based on the post-task

survey (Section 3.5).

Trust: The average rating to three survey statements asking

about participants’ trust in the AI assistance.

Understanding: The average rating to three survey statements

asking about participants’ understanding of the AI assistance.

Confidence in Main Task: The rating to one survey statement

asking about participants’ confidence when making judgments in

the main task.

Confidence in Learning Assessment: The rating to one sur-

vey statement asking about participants’ confidence when making

judgments in the learning assessment.

SUS: The average rating to ten survey statements asking about

participants’ perceived system usability.

Workload: The rating to six survey statements asking about

participants’ workload.

3.10 Statistical Analysis

In the main task, participants were randomly assigned to one of

five interface conditions—one control condition and four treatment

conditions from a two-by-two factorial design. Following recom-

mendations for analyzing experimental data where the control

condition is not part of the factorial design [32] and previous XAI

studies using the same experimental design (i.e., 2 × 2 treatments +

1 control) [50, 75], we conducted statistical analysis in two stages.

First, we conducted Dunnett’s tests [22] to compare each treat-

ment condition against the control condition. These tests considered

the effects of providing some form of explanation versus no expla-

nations. Second, we focused on the four treatment conditions only.
We conducted two-way ANOVA analysis based on the two-by-two

factorial design—(1) Word vs. WordPhen, with Word as the refer-

ence level and (2) Single vs. Both, with Single as the reference

level. The two-way ANOVA analysis allowed us to systematically

analyze the effects of providing phenomena-based explanations and

double-sided explanations that may not be apparent in individual

comparisons with the control condition. We conducted two-way

ANOVAs to consider both main and interaction effects. However,

there were no significant interaction effects for any of our measures.

Therefore, in the following section, we report on only main effects.

4 Results

4.1 Validating LLM-conjectured Phenomena

Before presenting results for RQ1-RQ3, we describe how we val-

idated the LLM-conjectured phenomena for the most predictive

words associated with each category (i.e., genuine and deceptive).

Evaluating the output from an LLM is a challenging task. Prior

studies have either compared the LLM output against a bench-

mark [31, 70] or have recruited human evaluators [29, 81]. In

our study, we took an algorithmic approach to evaluating LLM-

conjectured phenomena associated with the most predictive words.

Inspired by research that leveraged LLMs to evaluate machine-

generated contents [16, 39, 74], we integrated the conjectured phe-

nomena into a new deception detection prompt for another LLM

(GPT-4o). The rationale is that providing non-hallucinated phenom-

ena should improve (or at least not hurt) its predictive performance.

We used the following prompt: You are an expert in detecting
fake hotel reviews online. You will be given a review
for a Chicago hotel, and your task is to classify it as
a genuine or deceptive review. You only need to tell
your prediction. [auxiliary information][the review to
be predicted].

We evaluated three prompt conditions. First, we tested a zero-shot
prompt, where the LLM made predictions without any [auxiliary
information] [78]. Second, we used a ten-shot prompt to facili-

tate the LLMs’ in-context learning [8]. We substituted [auxiliary
information] with five genuine and five deceptive reviews from

the training data that were most semantically similar (measured

through text embeddings) to [the review to be predicted].
Finally, we used a phenomena-in-the-prompt condition, where we
replaced [auxiliary information] with all LLM-conjectured

phenomena associated with both genuine and deceptive reviews

(as shown in Table 1). We used GPT-4o through the OpenAI API

with default settings. For each condition, GPT-4o predicted one

review at one time. In total, we made 4800 independent API calls

(1600 reviews × 3 prompt conditions).

Table 3 shows evaluation results of GPT-4o’s predictive perfor-
mance under different prompt conditions (averaged across 10 folds).

The phenomena-in-the-prompt condition outperformed both zero-
shot and ten-shot conditions. These results demonstrate that the

LLM-conjectured phenomena used in our study were not

hallucinated. Rather, they are indeed related to psycholinguistic
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Table 3: Evaluation results of GPT-4o’s predictive performance on the Chicago hotel reviews dataset under different prompt

conditions. Means (and standard deviations) are computed from 10-fold cross validation. A ▲(▼) symbol indicates significant

differences (𝑝 < .05) from the phenomena-in-the-prompt condition (measured through Fisher’s Randomization tests [27]).

Prompt Condition Accuracy Precision Recall F1

zero-shot 0.6388 (0.0933) ▼ 0.7628 (0.1033) 0.3737 (0.1741) ▼ 0.4889 (0.1772)▼
ten-shot 0.6800 (0.0629) ▼ 0.6318 (0.0486)▼ 0.8712 (0.0597) 0.7318 (0.0496)

phenomena-in-the-prompt 0.7231 (0.0487) 0.7009 (0.0616) 0.8112 (0.1612) 0.7397 (0.0623)

patterns within genuine and deceptive hotel reviews. Thus, LLMs

can be a reliable tool to explain unintuitive words in deception de-

tection. More importantly, validating the conjectured phenomena

ensured that participants were not exposed to fabricated informa-

tion during our user study.

4.2 RQ1: Learning

In RQ1, we investigated the effects of the interface condition on

participants’ learning of the deception detection task. Figure 2

shows our RQ1 results. Our results found three main trends.

First, participants in the Control condition achieved 54.9% ac-

curacy in the learning assessment. Given that half the reviews were

genuine and half were deceptive, this accuracy value is only slightly

above random guessing. In the Control condition, participants got

trained merely from prediction outcomes without further explana-

tions. This result highlights the inherent difficulty of the deception

detection task for laypeople and resonates with prior work [4].

Second, compared to the Control condition, participants who

had access to predictive words with phenomena-based explanations

achieved significantly better learning outcomes in both objective

and subjective measures, while participants who only had access

to predictive words did not.

Third, the two-way ANOVA further confirmed that adding

phenomena-based explanations significantly improved both

subjective and objective learning compared to showing pre-

dictive words alone. Moreover, providing explanations for both

sides enhanced objective learning compared to explanations for

one side. One possible reason is that participants got richer training

experience in the main task.

4.3 RQ2: Reliance

In RQ2, we investigated the effects of the interface condition on

participants’ reliance on the AI. Figure 3 shows our RQ2 results.

There were no significant effects observed for the change toward

AI and over-reliance measures. Thus, the corresponding plots are

omitted. Our results found three main trends.

First, compared to the Control, participants did not exhibit

significantly different levels of reliance when having access to ex-

planation tools. However, the two-way ANOVA revealed a sig-

nificant difference for the stick with AI measure between Word

and WordPhen. When participants and the AI agreed initially,

phenomena-based explanations might have nudged partici-

pants to scrutinize AI predictions more critically and even

change to opposite judgments. As a result, they were less likely

to maintain the agreement with the AI (i.e., less reliance).

Second, compared to the Control, providing predictive words

with phenomena significantly increased participants’ appropriate

reliance and reduced their under-reliance, while only providing

predictive words did not have any significant effects. The two-way

ANOVA further confirmed this trend. Compared to predictive words

(e.g., breakfast, floor, elevator), providing the underlying phenom-

ena (e.g., genuine reviews often focus on physical and practical

aspects of hotel amenities) significantly reduced the likelihood

that participants rejected correct AI predictions.

Third, compared to the Control, both predictive words and

phenomena-based explanations did not significantly alleviate par-

ticipants’ over-reliance on incorrect AI predictions. It suggests that

while providing phenomena helped participants recognize

correct AI predictions more effectively, they did not always

help participants detect incorrect AI predictions. Nonetheless,

the reduction in under-reliance was strong enough to drive a sig-

nificant higher appropriate reliance, which was confirmed by the

two-way ANOVA.

4.4 RQ3: Perceptions

In RQ3, we investigated the effects of the interface condition on

participants’ perceptions of the AI and their experiences. Figure 4

shows our RQ3 results. Except for the failure measure, there were

no significant effects observed on other workload measures. Thus,

the corresponding plots are omitted. Our results found two main

trends.

First, compared to the Control, participants who had access to

phenomena-based explanations reported significantly higher trust,

understanding, and confidence, while participants who only had

access to predictive words did not report any significantly better

perceptions.

Second, the two-way ANOVA further confirmed the importance

of providing phenomena-based explanations. Compared to predic-

tive words alone, phenomena-based explanations resulted in

higher levels of trust and understanding of the AI, greater

confidence in making judgments, and higher perceived us-

ability without increasing workload. Moreover, participants

exposed to phenomena-based explanations reported significantly

lower level of perceived failure during the task.

5 Discussion

Summary of Results: In our study, we investigated the effects of

providing different types of AI assistance on participants’ learning,

reliance, and perceptions in a deception detection task. Our study

found the following results.

First, compared to the Control condition, only highlighting

predictive words did not have any significant effects. This is in con-

trast to findings in previous studies that in-situ feature importance

explanations improved participants’ decision-making performance

and perceptions of the AI system [2, 15, 45, 59]. One possible ex-

planation is that predictive words in this study indeed appeared
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Figure 2: Effects of different interface conditions on participants’ learning with means and standard error. The star mark

highlights interface conditions with statistically significant effects (𝑝 < .05) compared to the Control condition from Dunnett’s

tests. The text box highlights statistically significant effects (𝑝 < .05) from two-way ANOVA.
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Figure 3: Effects of different interface conditions on participants’ reliance with means and standard error. The star mark

highlights interface conditions with statistically significant effects (𝑝 < .05) compared to the Control condition from the

Dunnett’s test. The text box highlights statistically significant effects (𝑝 < .05) from two-way ANOVA.
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Figure 4: Effects of different interface conditions on participants’ perceptions with means and standard error. The star mark

highlights interface conditions with statistically significant effects (𝑝 < .05) compared to the Control condition from the

Dunnett’s test. The text box highlights statistically significant effects (𝑝 < .05) from two-way ANOVA.

unintuitive to participants. That is, without additional support, par-

ticipants did not understand the underlying phenomena associated

with the most predictive words.

Second, the two-way ANOVA betweenWord andWordPhen re-

vealed that compared to only highlighting predictive words, provid-

ing phenomena-based explanations significantly improved partici-

pants’ objective and subjective learning of the deception detection

task. When the AI prediction aligned with participants’ judgment,

phenomena-based explanations might have nudged participants to

think critically and even changed their mind—participants exhib-

ited a lower tendency to simply stick with the AI’s prediction. More

importantly, phenomena-based explanations helped participants

better recognize correct AI predictions that they might have oth-

erwise rejected, leading to significantly lower under-reliance that
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participants eventually achieved. Finally, phenomena-based expla-

nations improved participants’ perceptions of the AI and increased

their confidence when making judgments. All these benefits came

without an increase in workload.

Finally, the two-way ANOVA between Single and Both revealed

that compared to only providing explanations for the predicted label,

providing explanations for both labels led to a significant increase

in participants’ objective learning.

Design Implications: Our study results provide several design

implications for future XAI systems.

First, XAI research should aim to align machine-generated

explanations with human intuition. Our study results found

that only providing predictive words had no significant impacts

compared to showing model predictions. This suggests that al-

though the feature importance explanations were technically ac-

curate (i.e., generated through regression coefficients), they can

sometimes be incomprehensible to users. In contrast, participants

who had access to phenomena-based explanations reported sig-

nificantly better outcomes in learning, appropriate reliance, and

perceptions of the AI. Our goal of elevating word-based expla-

nations to phenomena-based explanations resonates with recent

trends in human-centered XAI [23, 37, 49, 73]. However, human-

centered design has sometimes been ignored in XAI research that

has primarily focused on technical innovation [51, 62, 69]. When

end-users are confused by feature importance explanations, they

are left to speculate about reasons for the feature’s predictiveness

on their own, without tools to support this process [61, 66]. Thus,

future XAI research should consider whether an explanation is

comprehensible to end-users and provide additional clarifications

when necessary.

Second, LLMs show promising capabilities for generating

human-understandable explanations. In this study, we devel-

oped and evaluated an LLM-based tool to explain predictive but

unintuitive words in deception detection. This tool has novelty in

three aspects compared to those developed in previous research.

First, unlike tools that generated explanations for unintuitive words

using training data [42, 61], our tool effectively conjectured phe-

nomena directly from predictive words without looking at any

examples. Second, rather than augmenting predictive words with

other words nearby [6, 34, 35, 72], our tool leveraged an LLM to gen-

erate natural language explanations. This is useful especially when

local contexts are insufficient to explain unintuitive words and ex-

ternal knowledge is required instead. Third, unlike approaches that

merely translate feature importance explanations into coherent nat-

ural language [25, 52, 52, 56, 71, 82], our tool transforms low-level
word features into higher-level phenomena-based features. To vali-

date these conjectured phenomena, we conducted an algorithmic

evaluation using a second LLM (Section 4.1). This conjecture-then-

validate pipeline is a novel contribution of our work and might

generalize to other predictive tasks.

Third, phenomena-based explanations can enhance human

learning in complex tasks. Our RQ1 results showed that partici-

pants who had access to phenomena-based explanations achieved

better knowledge transfer than those who only had predictive

words. This result is not surprising—while the word “Chicago” is the

strongest signal for deceptive Chicago hotel reviews, it does not gen-

eralize to hotel reviews in other cities. In contrast, its corresponding

phenomenon (i.e., “deceptive reviews tend to name-drop hotel and

city names”) offers a more generalizable insight. Notably, partici-

pants who interacted with both-sided, phenomena-based explana-

tions (i.e., the WordPhenBoth condition) achieved 74.2% accuracy

in the learning assessment. This is comparable to the deception

detection performance reported in a prior studywhen users had real-

time assistance from multiple tools [45]. This finding suggests that

in addition to assisting humans in decision-making [2, 11, 44, 45, 59],

future XAI systems could also prioritize teaching humans about

complex tasks. Previous research also highlighted the potential

use of XAI techniques to train novices on tasks like diagnosing

diseases [68] and playing Chess [20].

Limitations and Future Work: Our study has several limita-

tions. First, we only experimented with GPT-4o to generate phe-

nomena for words predictive of hotel reviews being genuine or fake.

To test the generalizability of our approach, future work should

consider other LLMs and predictive tasks. Second, GPT-4o was

prompted to conjecture the underlying phenomena from predictive

words in a single pass. Future work could explore providing supple-

mentary auxiliary information like example reviews for predictive

words and iteratively refining the LLM-conjectured phenomena

with human feedback. Finally, participants’ learning outcomes were

measured solely by their judgment accuracy in the learning assess-

ment. A future study could use both a pre- and post-test to capture

prior knowledge and learning. Additionally, a future study could

measure rate of learning as participants interact with the AI system.

6 Conclusion

Feature importance explanation is a popular XAI technique to ex-

plain machine learning model predictions. However, text features

deemed predictive by machines may appear unintuitive to end-

users. Such unintuitive words often represent certain underlying

language phenomena that cannot be directly observed from their

surrounding contexts. In this paper, we used deception detection

as a case study. We developed a novel LLM-based tool to explain

why a word is predictive of genuine or deceptive reviews. An LLM

was prompted to conjecture underlying phenomena directly from

predictive words. We first validated the LLM-generated explana-

tions to be non-hallucinated through an algorithmic evaluation.

Then, we conducted a crowdsourced study (𝑁 = 220) to investi-

gate how unintuitive words and LLM-generated explanations influ-

ence end-users in decision-making. We found that: (1) compared to

model predictions alone, providing predictive words did not lead

to any significant effects; (2) supplementing predictive words with

LLM-conjectured phenomena significantly improved participants’

learning of the task, appropriate reliance on the AI system, and

overall perceptions. Our study results highlighted the importance of

providing additional explanations for predictive features that do not

make immediate sense. Furthermore, our LLM-based tool and the

conjecture-then-validate pipeline have the potential of explaining

unintuitive feature importance explanations in other tasks.

Ethics Statements

Ethical considerations statement: The study was reviewed and

approved by our Institutional Review Board (IRB). During the study,
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participants were asked to complete the task at their own comfort-

able pace. The study design, which included eight trials in the main

task and six trials in the learning assessment, was informed by

a pilot study to ensure sufficient data collection without causing

cognitive overload. Participants were fully informed that the study

involved evaluating pre-labeled deceptive hotel reviews with no ac-
tual deception. The study used a between-subjects design. This was

partly done to help prevent a “spill-over effect” between interface

conditions within a single participant.

Adverse impact statement: In our study, we leverage a large

language model (LLM) to explain why a word is predictive of gen-

uine or deceptive hotel reviews.While our study highlighted hidden

yet meaningful psycholinguistic phenomena in hotel reviews, an

adverse impact could arise if these insights are misused to craft

deceptive reviews that closely resemble genuine ones. Reviews

deliberately produced to avoid including deceptive traits and em-

phasize genuine traits could become significantly harder to detect.

We call for responsible usage of AI technologies and future research

to mitigate these risks.
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A Preliminary Investigation Results

As described in Section 3.2, we trained logistic regression classifiers

using a unigram TF-IDF representation on a dataset of Chicago

hotel reviews. We identified predictive words through regression

coefficients. For instance, words like “Chicago”, “hotel” and ”luxury”

are predictive of deceptive reviews, and words like “location”, “floor”

and “small” are predictive of genuine reviews. Our goal was to

explain such salient but unintuitive word-label relations.

During our preliminary investigation, we experimented with the

contextual pattern mining algorithm developed in [61]. Essentially,

to explain why a word is predictive of a label, the algorithm itera-

tively adds surrounding words to the word—which generates new

phrases—and leverages a zero-shot classifier to estimate whether

such a phrase is indicative of the target label. Table A.1 summa-

rizes the most frequent and informative patterns identified by the

contextual pattern mining algorithm for each predictive word. In

this case, a BART-based zero-shot classifier believes that each pat-

tern in Table A.1 is sufficiently predictive of the associated label

(“deceptive” or “genuine”). However, the predictions given by such

a zero-shot classifier is unreliable. This is because the mechanism

of the zero-shot classifier is to find the label that is most seman-

tically similar to the input text, which is ill-suited for a task like

deception detection. It is evident that few of the contextual patterns

in Table A.1 are practically helpful at explaining why a word is

predictive of genuine or deceptive reviews. These results suggest

that unlike unintuitive words in sentiment analysis that represent

context-related phenomena (e.g., the word “problems” predicts pos-

itive sentiment because of colloquial expressions like “without any

problems” or negations like “no problems”), those in deception de-

tection can represent underlying phenomena that go beyond

local context. This has inspired us to develop a novel LLM-based

approach that can conjecture reasons beyond local context.

B Task Allocation

Figure B.1 illustrates our task allocation. Each participant was ran-
domly assigned to one interface condition and one batch. The re-

views within each batch were presented in random order during
both the main task and the learning assessment (i.e., the order

shown in the figure is for illustrative purposes only).

C Significance Testing Results with Effect Sizes

Table C.1, Table C.2 and Table C.3 summarize the significance test-

ing results for all measures (RQ1-RQ3) with exact 𝑝-values and

corresponding effect sizes. For Dunnett’s tests that compared each

treatment condition to the control condition, we report Cohen’s

𝑑 [18] as the effect size. For two-way ANOVAs that examined the

four treatment conditions, we report partial eta squared (𝜂
2

𝑝 ) [64]

as the effect size.
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Table A.1: Examples of contextual patterns found for predictive but unintuitive words in deception detection.

word patterns within deceptive reviews patterns within genuine reviews

Chicago Chicago water Chicago really

hotel the hotel is located hotel as

luxury for a luxury hotel this place did not cleanliness and luxury are top notch

location location but was excellent and the location of the hotel

floor lower floor ceiling to floor with the room

small small and the small intimate lobby area

Predicted LabelTrue LabelCityNo.

genuinegenuine

Chicago

1

deceptivegenuine2

deceptivedeceptive3

genuinedeceptive4

genuinegenuine5

deceptivegenuine6

deceptivedeceptive7

genuinedeceptive8

True LabelCityNo.

genuineLA1

deceptiveLA2

genuineNYC3

deceptiveNYC4

genuineHouston5

deceptiveHouston6

A sequence for the main task
A sequence for the

learning assessment

WordPhenBoth

Same
Interface

WordPhenSingle

WordBoth

WordSingle

Control

Batch 1

22
bat

che
s

No AI 
Assistance

Figure B.1: Task allocation.

Table C.1: Significance-testing results for RQ1 (learning) measures with exact 𝑝-values and effect sizes.

Measures Dunnett’s tests Two-way ANOVAs

Judgment Accuracy

WordSingle vs. Control: 𝑝 = 0.354, 𝑑 = 0.326

WordBoth vs. Control: 𝑝 = 0.054, 𝑑 = 0.518

WordPhenSingle vs. Control: 𝑝 = 0.027, 𝑑 = 0.575

WordPhenBoth vs. Control: 𝑝 < 0.001, 𝑑 = 0.978

type: 𝐹(1, 172) = 5.596, 𝑝 = 0.019, 𝜂
2

𝑝 = 0.030

side: 𝐹(1, 172) = 3.928, 𝑝 = 0.049, 𝜂
2

𝑝 = 0.020

type*side: 𝐹(1, 172) = 0.495, 𝑝 = 0.483, 𝜂
2

𝑝 = 0.003

Perceived Learning

WordSingle vs. Control: 𝑝 = 0.279, 𝑑 = 0.355

WordBoth vs. Control: 𝑝 = 0.903, 𝑑 = 0.144

WordPhenSingle vs. Control: 𝑝 = 0.002, 𝑑 = 0.744

WordPhenBoth vs. Control: 𝑝 < 0.001, 𝑑 = 1.039

type: 𝐹(1, 172) = 19.684, 𝑝 < 0.001, 𝜂
2

𝑝 = 0.100

side: 𝐹(1, 172) = 0.083, 𝑝 = 0.774, 𝜂
2

𝑝 = 0.001

type*side: 𝐹(1, 172) = 3.055, 𝑝 = 0.082, 𝜂
2

𝑝 = 0.020
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Table C.2: Significance testing results for RQ2 (reliance) measures with exact 𝑝-values and effect sizes.

Measures Dunnett’s tests Two-way ANOVAs

Change toward AI

WordSingle vs. Control: 𝑝 = 0.324, 𝑑 = −0.337
WordBoth vs. Control: 𝑝 = 0.921, 𝑑 = −0.136
WordPhenSingle vs. Control: 𝑝 = 0.520, 𝑑 = −0.271
WordPhenBoth vs. Control: 𝑝 = 0.956, 𝑑 = −0.114

type: 𝐹(1, 172) = 0.086, 𝑝 = 0.769, 𝜂
2

𝑝 = 0.001

side: 𝐹(1, 172) = 1.428, 𝑝 = 0.234, 𝜂
2

𝑝 = 0.008

type*side: 𝐹(1, 172) = 0.022, 𝑝 = 0.882, 𝜂
2

𝑝 = 0.000

Stick with AI

WordSingle vs. Control: 𝑝 = 0.087, 𝑑 = 0.477

WordBoth vs. Control: 𝑝 = 0.065, 𝑑 = 0.502

WordPhenSingle vs. Control: 𝑝 = 0.462, 𝑑 = 0.289

WordPhenBoth vs. Control: 𝑝 = 1.000, 𝑑 = −0.023

type: 𝐹(1, 172) = 6.760, 𝑝 = 0.010, 𝜂
2

𝑝 = 0.040

side: 𝐹(1, 172) = 1.097, 𝑝 = 0.297, 𝜂
2

𝑝 = 0.006

type*side: 𝐹(1, 172) = 1.513, 𝑝 = 0.220, 𝜂
2

𝑝 = 0.009

Under-Reliance

WordSingle vs. Control: 𝑝 = 0.984, 𝑑 = −0.085
WordBoth vs. Control: 𝑝 = 0.481, 𝑑 = −0.283
WordPhenSingle vs. Control: 𝑝 = 0.043, 𝑑 = −0.537
WordPhenBoth vs. Control: 𝑝 = 0.030, 𝑑 = −0.566

type: 𝐹(1, 172) = 5.830, 𝑝 = 0.017, 𝜂
2

𝑝 = 0.030

side: 𝐹(1, 172) = 0.552, 𝑝 = 0.459, 𝜂
2

𝑝 = 0.003

type*side: 𝐹(1, 172) = 0.310, 𝑝 = 0.578, 𝜂
2

𝑝 = 0.002

Over-Reliance

WordSingle vs. Control: 𝑝 = 0.205, 𝑑 = −0.391
WordBoth vs. Control: 𝑝 = 0.607, 𝑑 = −0.244
WordPhenSingle vs. Control: 𝑝 = 0.128, 𝑑 = −0.440
WordPhenBoth vs. Control: 𝑝 = 0.099, 𝑑 = −0.464

type: 𝐹(1, 172) = 0.815, 𝑝 = 0.368, 𝜂
2

𝑝 = 0.005

side: 𝐹(1, 172) = 0.168, 𝑝 = 0.682, 𝜂
2

𝑝 = 0.001

type*side: 𝐹(1, 172) = 0.330, 𝑝 = 0.566, 𝜂
2

𝑝 = 0.002

Appropriate Reliance

WordSingle vs. Control: 𝑝 = 0.304, 𝑑 = 0.345

WordBoth vs. Control: 𝑝 = 0.262, 𝑑 = 0.363

WordPhenSingle vs. Control: 𝑝 = 0.007, 𝑑 = 0.672

WordPhenBoth vs. Control: 𝑝 = 0.004, 𝑑 = 0.708

type: 𝐹(1, 172) = 4.961, 𝑝 = 0.027, 𝜂
2

𝑝 = 0.030

side: 𝐹(1, 172) = 0.033, 𝑝 = 0.857, 𝜂
2

𝑝 = 0.000

type*side: 𝐹(1, 172) = 0.004, 𝑝 = 0.952, 𝜂
2

𝑝 = 0.000
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Table C.3: Significance testing results for RQ3 (perceptions) measures with exact 𝑝-values and effect sizes.

Measures Dunnett’s tests Two-way ANOVAs

Trust

WordSingle vs. Control: 𝑝 = 1.000, 𝑑 = 0.000

WordBoth vs. Control: 𝑝 = 0.997, 𝑑 = −0.056
WordPhenSingle vs. Control: 𝑝 = 0.043, 𝑑 = 0.538

WordPhenBoth vs. Control: 𝑝 < 0.001, 𝑑 = 0.798

type: 𝐹(1, 172) = 21.815, 𝑝 < 0.001, 𝜂
2

𝑝 = 0.110

side: 𝐹(1, 172) = 0.469, 𝑝 = 0.494, 𝜂
2

𝑝 = 0.003

type*side: 𝐹(1, 172) = 1.121, 𝑝 = 0.291, 𝜂
2

𝑝 = 0.007

Understanding

WordSingle vs. Control: 𝑝 = 0.638, 𝑑 = 0.235

WordBoth vs. Control: 𝑝 = 0.995, 𝑑 = 0.063

WordPhenSingle vs. Control: 𝑝 < 0.001, 𝑑 = 1.279

WordPhenBoth vs. Control: 𝑝 < 0.001, 𝑑 = 1.331

type: 𝐹(1, 172) = 61.250, 𝑝 < 0.001, 𝜂
2

𝑝 = 0.260

side: 𝐹(1, 172) = 0.166, 𝑝 = 0.684, 𝜂
2

𝑝 = 0.001

type*side: 𝐹(1, 172) = 0.574, 𝑝 = 0.450, 𝜂
2

𝑝 = 0.003

Conf. Main Task

WordSingle vs. Control: 𝑝 = 1.000, 𝑑 = −0.017
WordBoth vs. Control: 𝑝 = 0.998, 𝑑 = −0.049
WordPhenSingle vs. Control: 𝑝 = 0.086, 𝑑 = 0.477

WordPhenBoth vs. Control: 𝑝 = 0.017, 𝑑 = 0.609

type: 𝐹(1, 172) = 17.333, 𝑝 < 0.001, 𝜂
2

𝑝 = 0.090

side: 𝐹(1, 172) = 0.127, 𝑝 = 0.722, 𝜂
2

𝑝 = 0.001

type*side: 𝐹(1, 172) = 0.354, 𝑝 = 0.553, 𝜂
2

𝑝 = 0.002

Conf. Assessment

WordSingle vs. Control: 𝑝 = 0.998, 𝑑 = −0.052
WordBoth vs. Control: 𝑝 = 0.968, 𝑑 = 0.103

WordPhenSingle vs. Control: 𝑝 = 0.098, 𝑑 = 0.465

WordPhenBoth vs. Control: 𝑝 = 0.044, 𝑑 = 0.534

type: 𝐹(1, 172) = 10.819, 𝑝 = 0.001, 𝜂
2

𝑝 = 0.060

side: 𝐹(1, 172) = 0.604, 𝑝 = 0.438, 𝜂
2

𝑝 = 0.004

type*side: 𝐹(1, 172) = 0.089, 𝑝 = 0.765, 𝜂
2

𝑝 = 0.001

SUS

WordSingle vs. Control: 𝑝 = 0.871, 𝑑 = −0.159
WordBoth vs. Control: 𝑝 = 0.137, 𝑑 = −0.433
WordPhenSingle vs. Control: 𝑝 = 0.262, 𝑑 = 0.363

WordPhenBoth vs. Control: 𝑝 = 0.919, 𝑑 = 0.136

type: 𝐹(1, 172) = 12.747, 𝑝 = 0.001, 𝜂
2

𝑝 = 0.070

side: 𝐹(1, 172) = 2.688, 𝑝 = 0.103, 𝜂
2

𝑝 = 0.020

type*side: 𝐹(1, 172) = 0.025, 𝑝 = 0.876, 𝜂
2

𝑝 = 0.000

Mental demand

WordSingle vs. Control: 𝑝 = 0.886, 𝑑 = −0.152
WordBoth vs. Control: 𝑝 = 0.986, 𝑑 = 0.083

WordPhenSingle vs. Control: 𝑝 = 1.000, 𝑑 = −0.014
WordPhenBoth vs. Control: 𝑝 = 0.886, 𝑑 = −0.152

type: 𝐹(1, 172) = 0.105, 𝑝 = 0.746, 𝜂
2

𝑝 = 0.001

side: 𝐹(1, 172) = 0.105, 𝑝 = 0.746, 𝜂
2

𝑝 = 0.001

type*side: 𝐹(1, 172) = 1.564, 𝑝 = 0.213, 𝜂
2

𝑝 = 0.009

Physical demand

WordSingle vs. Control: 𝑝 = 0.999, 𝑑 = 0.036

WordBoth vs. Control: 𝑝 = 0.997, 𝑑 = 0.053

WordPhenSingle vs. Control: 𝑝 = 0.867, 𝑑 = 0.160

WordPhenBoth vs. Control: 𝑝 = 0.999, 𝑑 = 0.036

type: 𝐹(1, 172) = 0.116, 𝑝 = 0.734, 𝜂
2

𝑝 = 0.001

side: 𝐹(1, 172) = 0.116, 𝑝 = 0.734, 𝜂
2

𝑝 = 0.001

type*side: 𝐹(1, 172) = 0.206, 𝑝 = 0.651, 𝜂
2

𝑝 = 0.001

Temporal demand

WordSingle vs. Control: 𝑝 = 0.581, 𝑑 = −0.252
WordBoth vs. Control: 𝑝 = 0.971, 𝑑 = 0.101

WordPhenSingle vs. Control: 𝑝 = 0.950, 𝑑 = −0.118
WordPhenBoth vs. Control: 𝑝 = 0.420, 𝑑 = −0.302

type: 𝐹(1, 172) = 0.789, 𝑝 = 0.376, 𝜂
2

𝑝 = 0.005

side: 𝐹(1, 172) = 0.308, 𝑝 = 0.580, 𝜂
2

𝑝 = 0.002

type*side: 𝐹(1, 172) = 3.156, 𝑝 = 0.077, 𝜂
2

𝑝 = 0.020

Failure

WordSingle vs. Control: 𝑝 = 0.434, 𝑑 = 0.298

WordBoth vs. Control: 𝑝 = 0.741, 𝑑 = 0.204

WordPhenSingle vs. Control: 𝑝 = 0.835, 𝑑 = −0.173
WordPhenBoth vs. Control: 𝑝 = 0.939, 𝑑 = −0.125

type: 𝐹(1, 172) = 6.884, 𝑝 = 0.010, 𝜂
2

𝑝 = 0.040

side: 𝐹(1, 172) = 0.024, 𝑝 = 0.878, 𝜂
2

𝑝 = 0.000

type*side: 𝐹(1, 172) = 0.214, 𝑝 = 0.644, 𝜂
2

𝑝 = 0.001

Effort

WordSingle vs. Control: 𝑝 = 0.988, 𝑑 = −0.078
WordBoth vs. Control: 𝑝 = 0.483, 𝑑 = −0.282
WordPhenSingle vs. Control: 𝑝 = 0.483, 𝑑 = −0.282
WordPhenBoth vs. Control: 𝑝 = 0.875, 𝑑 = −0.157

type: 𝐹(1, 172) = 0.066, 𝑝 = 0.798, 𝜂
2

𝑝 = 0.000

side: 𝐹(1, 172) = 0.066, 𝑝 = 0.798, 𝜂
2

𝑝 = 0.000

type*side: 𝐹(1, 172) = 1.159, 𝑝 = 0.283, 𝜂
2

𝑝 = 0.007

Frustration

WordSingle vs. Control: 𝑝 = 0.933, 𝑑 = −0.129
WordBoth vs. Control: 𝑝 = 0.994, 𝑑 = 0.065

WordPhenSingle vs. Control: 𝑝 = 0.399, 𝑑 = −0.310
WordPhenBoth vs. Control: 𝑝 = 0.561, 𝑑 = −0.258

type: 𝐹(1, 172) = 2.712, 𝑝 = 0.101, 𝜂
2

𝑝 = 0.020

side: 𝐹(1, 172) = 0.644, 𝑝 = 0.423, 𝜂
2

𝑝 = 0.004

type*side: 𝐹(1, 172) = 0.216, 𝑝 = 0.643, 𝜂
2

𝑝 = 0.001
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