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Abstract
In professional search tasks such as precision medicine literature
search, queries often involve multiple aspects. To assess the rele-
vance of a document, a searcher often painstakingly validates each
aspect in the query and follows a task-specific logic to make a rel-
evance decision. In such scenarios, we say the searcher makes a
structured relevance judgment, as opposed to the traditional uni-
variate (binary or graded) relevance judgment. Ideally, a search
engine can support searcher’s workflow and follow the same steps
to predict document relevance. This approach may not only yield
highly effective retrieval models, but also open up opportunities for
the model to explain its decision in the same ‘lingo’ as the searcher.
Using structured relevance judgment data from the TREC Precision
Medicine track, we propose novel retrieval models that emulate
how medical experts make structured relevance judgments. Our
experiments demonstrate that these simple, explainable models can
outperform complex, black-box learning-to-rank models.
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1 Introduction
Consider a clinician searching the literature to plan on personalized
treatments for a patient, a 50-year-oldman diagnosedwith leukemia
with genetic variation on BRAF (V600R). Ideally, the clinician could
locate an article on leukemia treatment where the studied subjects
have the same characteristics as the patient. In reality, however,
the search would more likely return articles where the subjects
match the patient on some but not all characteristics (e.g., same
disease and genetic variation but different gender and age group).
Such articles may still be relevant if the matched characteristics
are clinically more important than the unmatched, as judged by
the clinician. In such scenarios, the relevance judgment criteria can
be described as a cascade of rules [7]. If we represent these rules
as a decision tree (Figure 1), then we can represent the relevance
judgments as a path from the root to a leaf.
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Figure 1: An illustration of relevance judgment decision pro-
cess in precision medicine literature search.

The above scenario is an example of professional search tasks [9].
These also include tasks like patent search, recruitment search, and
systematic review. In these tasks, the search criteria are expressed
as a logical function of various high-level aspects. When assessing
the relevance of a document, the searcher would carefully check
each aspect and deliberate on the overall relevance of a document.

Ideally, a search system can understand the searcher’s informa-
tion need in terms of high-level aspects and reason about result rele-
vance using the same logic. This would allow the system to explain
its decision using the same ‘lingo’ as the searcher. Indeed, previous
work has shown that professional searchers value transparency
more than pure ranking performance [9]. However, current search
systems barely provide transparency in support of these tasks. The
simplistic approach of highlighting matched terms in result sum-
maries is viable only for explaining ad-hoc search results. Modern
ranking algorithms are highly complex and do not necessarily fol-
low the reasoning process of professionals. Though it is possible to
generate post-hoc explanations for these ‘black boxes’ [10], such
explanations may still be unreliable and misleading [8].

In this paper, we explore retrieval models that closely follow the
work process of professional searchers. In this respect, our proposed
models are inherently explainable. Empirical experiments show that
they can outperform complex learning-to-rank approaches. Our
result suggests a promising direction towards building retrieval
models that can better support professional search tasks.
2 Structured Relevance Judgment
Above, we describe search scenarios in which relevance is defined
as a function of different aspects or criteria. To develop systems
for such search scenarios, the ideal data should include not only
relevance judgements for query-document pairs, but also interme-
diate judgements about different relevance aspects (or criteria), and
explanations about how these were combined to derive a final rel-
evance judgement. Such data are commonly seen in user studies
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Figure 2: Structured relevance judgment employed in TREC
Precision Medicine track.

(e.g., from comments gathered using think-aloud protocols [12]).
However, these are rarely considered in batch evaluation set-ups.
As one exception, the TREC Precision Medicine (PM) track has
been releasing such data since 2017 [7]. This TREC track considers
search scenarios such as the one in Section 1, in which relevance is
defined logically based on different aspects or criteria.

PM track organizers provide structured relevance judgements,
where each document is assigned a relevance level (i.e., not rele-
vant, partially relevant, definitely relevant) based on intermediate
judgements on multiple aspects, as illustrated in Figure 2. Each
aspect takes a categorical outcome. For example, regarding the
Disease aspect, a document may take one of these categories: (1)
Exact (i.e., mentions the disease in the query), (2) More general (i.e.,
mentions a more general disease), (3) More specific (i.e., mentions
a more specific disease), or (4) No disease (i.e., does not mention a
related disease). All aspects and corresponding outcomes are shown
in the left two columns of Table 1. Given a query, a document’s
gold-standard relevance level is determined by evaluating these
intermediate judgements against a pre-defined cascade of rules (i.e.,
a decision tree). We refer the reader to Roberts et al. [7] for details
about the judgments criteria and decision rules in the PM track.

The PM track released 30 queries with 22,642 judged documents
in 2017, and 50 queries with 22,429 judged documents in 2018, for
the subtask of PubMed abstract search. Intermediate judgments
are manually made by oncologists from the University of Texas
MD Anderson Cancer Center. Then relevance levels are computed
by passing intermediate judgments through a pre-defined decision
tree. We use these data in this paper.
3 Proposed Retrieval Algorithm
The relevance judgment structure in Figure 2 naturally inspires
a new retrieval algorithm as follows. For each aspect, we train a
multi-class classifier that predicts categorical outcomes (i.e., middle
column in Table 1). Then we feed the predictions to the pre-defined
decision tree to compute a relevance level. This approach has the
potential to deliver good retrieval performance as it closely follows
the true relevance decision process. It is also highly explainable as
its decision steps emulate those of human experts by design.

Below we describe our implementation of the proposed retrieval
algorithm. Its components – aspect classifiers and a decision tree –
are learned from data. We use the 30 queries in 2017 PM track to
train these components, and the 50 queries in 2018 PM track for
experimental evaluation (Section 4).
3.1 Aspect classifiers
Input features. Each classifier takes aspect-specific features ex-
tracted from a query-document pair. In this preliminary work, we
employ a small set of features per aspect (right column in Table 1).

Table 1: Relevance aspects and classifier features

Aspects Outcomes Classifier Features
Relevance to Human PM # Human PM keywords (n)
cancer Animal PM # Animal PM keywords (n)
treatment Not PM # Not PM keywords (n)

Exact # query disease match (n)
Disease More General # disease descendants match (n)

More Specific # disease ancestors match (n)
No Disease
Exact # query gene & aliases match (n)
Missing Gene is variation in query (b)

Gene Missing Variant # query variation match (n)
Different Variant # other variations match (n)

is other info in query (b)
# other info match (n)

Match is gender mentioned in article (b)
Demographic Excludes is gender different in article (b)

Not Discussed is age mentioned in article (b)
difference in age (n)

b : binary-valued, #: count of, n: real-valued, PM: precision medicine

Cancer Treatment Relevance classifier has three feature categories,
each counting terms that indicate an outcome. These are selected
by taking top 20 terms with highest TF-IDF weights in documents
associated with each outcome, as well as terms used in Oleynik et
al. [6]. Disease classifier has three feature categories, each counting
terms that correspond to synonyms, descendants, and ancestors of
the disease in the query. We use the Lexigram API to map disease
relations. For Gene classifier, we use the NCBI gene database to
expand aliases and the PMKB database to expand variations, and
include counts of both original and expanded gene and variation
terms as features. Not every query gene comes with a variation,
which we indicate using a binary feature. We also check whether
the query gene has other information like amplification or deletion,
and count the match. For Demographic classifier, we first detect
whether a document mentions any gender or age information, then
check whether the information matches that in the query.

Classification Models. All classifiers are one-versus-rest logis-
tic regression models with regularization weight C = 0.5. During
the manual assessment process, documents unrelated to cancer
treatment were considered not relevant and all other aspects were
not further assessed. To distinguish between “missing judgments”
and “negative examples”, these documents were excluded when
training Disease, Gene, and Demographic classifiers. Table 2 summa-
rizes classifier performance. These performance numbers are not
high but still reasonable, considering severely skewed label distri-
butions (e.g., the majority of judged documents are non-relevant to
cancer treatment, or Not PM) and relatively simple feature sets.

Table 2: Aspect classifier performance

Aspect Macro-F1 Accuracy
Relevance to cancer treatment 0.45 0.58
Disease 0.46 0.59
Gene 0.41 0.46
Demographic 0.48 0.74



3.2 Decision tree
Building the decision tree. Instead of hand-coding the pre-defined
cascade of rules into a decision tree, we (re)learn the tree from
structured relevance judgment data. The manually assessed aspect
outcomes are input features and the relevance level is the target
category. We represent all outcomes as binary variables, so that
each non-leaf node makes a binary decision on whether an outcome
is true or false. Using information gain as the splitting criterion, we
learned a decision tree that achieved nearly 100% accuracy. This
is not surprising, since aspect outcomes and relevance levels are
known to be related through a simple decision logic. The tree en-
codes this decision logic with 13 non-leaf nodes and 14 leaf nodes, i.e.
14 root-to-leaf decision paths (the longest has 5 internal decisions).
Notably, it learns that if a document is not about cancer treatment,
then it is not relevant regardless of other aspect outcomes.

Handling predicted outcomes. The above decision tree as-
sumes manually assessed binary outcomes as inputs. To work as a
retrieval component, the tree should be able to handle classifier-
predicted outcomes as inputs. In our context, these are confidence
values (i.e., p (y = 1|x )) predicted by logistic regression models.

The original decision process of the tree can be viewed as a ‘walk’
from the root to a leaf, making a binary decision at each non-leaf
node. Now given confidence values predicted at each non-leaf node,
we propose two ways of ‘taking the walk’:
• Deterministic walk: at each node, the walk follows the branch

with confidence value of 50% or greater. In the end, the walk reaches
a single leaf node, which determines a relevance level.
• Probabilistic walk: at each node, the walk follows either branch

with probability equal to the confidence value towards that branch.
This randomwalk reaches every leaf nodewith non-zero probability,
i.e. the product of all confidence values from the root to a leaf.

In terms of output, the decision tree predicts a probability dis-
tribution p (r |q,d ) over relevance levels r ∈ {not relevant, partially
relevant, definitely relevant} for a given query-document pair (q,d ).
The deterministic walk makes a hard prediction: p (r∗ |q,d ) = 1 for
some r∗ and 0 otherwise. We call this approach Tree-hard. The
probabilistic walk makes a soft prediction: it predicts p (r |q,d ) as
the probability of reaching any leaf associated with relevance level
r . We call this approach Tree-soft.

Tree-hard and Tree-soft differ in their sensitivity to inaccurate
predictions from our aspect classifiers. For Tree-hard, a single pre-
diction error at any node will likely ‘sway’ the deterministic walk
down a wrong path. For Tree-soft, when prediction errors occur,
the probabilistic walk will still follow the right path with non-zero
probability. In this regard, Tree-soft may have higher tolerance
for inaccurate predictions, especially if these correspond to low-
confidence misclassifications (i.e., p (y = 1|x ) ≈ 0.5).

Generating a ranking score. To rank documents, we need to
generate a score for each (q,d ). We use a variant of the approach
in Li et al. [5]: s (q,d ) =

[∑
r ∈{0,1,2}wr · p (r |q,d )

]
+ b (q,d ), where

the weight wr should increase with relevance level r . We define
r = 0, 1, 2 as not relevant, partially relevant, and definitely relevant,
respectively, and set w0 = 0, w1 = 0.5 and w2 = 1. The first
term

[∑
r ∈{0,1,2}wr · p (r |q,d )

]
is large if p (r = 2|p,d ) is large, i.e.

the decision path unambiguously leads to a definitely relevant leaf.
b (q,d ) ∈ [0, 1] is the min-max scaled score generated by the initial

retrieval algorithm (e.g. BM25). Overall, a large s (q,d ) expresses
that d is relevant in a clearly interpretable manner.
4 Experimental Evaluation
4.1 Initial retrieval stage
All compared methods take query-document pairs as input and
predict ranking scores as output, working as rerankers after an
initial retrieval stage. We implement a simple initial retrieval stage
as it is orthogonal to the comparison of rerankers. For each topic,
we concatenate disease and gene terms to generate a search query,
and then use the BM25 scoring function to retrieve the top 500 doc-
uments for reranking. We used Lucene to index TREC 2017/18 PM
track corpus (26.7M medical abstracts) and perform BM25 scoring.
4.2 Learning-to-rank baselines
To put the performance of the proposed approach in perspective,
we compare it with classical learning-to-rank (LTR) approaches
described below. In terms of explainability, LTR models are often
highly complex (e.g. neural networks or large ensembles of base
models[3]). Due to their complexity, LTR models make less explain-
able relevance predictions than the proposed approach.

LTR-high. The first baseline replaces the simple decision tree
in the proposed approach by a more expressive LTR model. It takes
classifier-predicted outcomes (second column in Table 1) and BM25
score as its features and predicts a ranking score. In other words,
aspect classifiers extract high-level query-document features.

LTR-low. The second baseline takes aspect features (third col-
umn in Table 1) and BM25 score as LTR features and predicts a rank-
ing score. Instead of using aspect classifiers as feature extractors,
this monolithic LTR model directly works with low-level features.

LTR-high needs classifier-predicted outcomes as features for
both training and evaluation. We generate these predictions on
training data using 5-fold cross validation, and generate them on
test data by applying the classifiers trained on all training data.

Both LTR models were trained using the implementation of
LambdaMART [3] available in the RankLib toolkit. To obtain the
strongest baselines, we set the hyperparameters of each LTR model
to those that maximize its mean average precision on 5-fold cross
validation. We performed grid search for the following hyperpa-
rameters: number of trees, number of leaves in each tree, learning
rate, and minimum leaf support. The resultant optimal models are
highly complex (1,900 trees for LTR-high; 700 trees for LTR-low).
4.3 Results
Weuse threemetrics to evaluate ranking performance: precision@10
(P@10), which focuses on precision at top ranks; R-precision (R-
prec) and mean average precision (MAP), which emphasize both
recall and precision. Table 3 shows results for the above algorithms
in terms of P@10, R-prec, MAP. For comparison, we also show re-
sults of BM25.When comparing approaches, we tested for statistical
significance using Fisher’s Randomization Test [11] (α = .05).

Tree-hard vs. Tree-soft. First, we compare between tree-based
approaches (Section 3.2). The Tree-soft approach outperformed the
Tree-hard approach by a significant margin in all three metrics (p <
.001). This result suggests an important trend—when traversing
the “relevance decision tree” using predicted (vs. gold-standard)
relevance aspects, it is better to traverse the tree probabilistically
(i.e., using prediction confidence values) than to follow the single
most confident path to a leaf node.



Table 3: Evaluation Results of P@10, R-prec, and MAP. Sta-
tistically significant differences discussed in the text.

Method P@10 R-prec MAP
BM25 0.5360 0.3122 0.2273
LTR-high 0.5440 0.2979 0.2202
LTR-low 0.5880 0.3310 0.2419
Tree-hard 0.5460 0.3232 0.2378
Tree-soft 0.6220 0.3463 0.2605

LTR-low vs. LTR-high. Next, we compare between LTR-based
approaches (Section 4.2). LTR-low outperformed LTR-high in terms
of all three metrics. However, the differences were significant only
in R-prec and MAP (p < .01) and not significant in P@10 (p = .121).
Interestingly, an LTR-based approach (using LambdaMART) per-
formed better with low-level features than the high-level relevance
aspects predicted by our aspect classifiers (Section 3.1).

Tree-soft vs. LTR-low. Finally, we compare between the best
tree-based approach (Tree-soft) and the best LTR-based approach
(LTR-low). Here, the Tree-soft approach outperformed the LTR-low
approach with a significant margin in all three metrics (p < .01). It
is important to note that the Tree-soft approach is a much simpler
(more interpretable) approach than the LTR-low approach.
4.4 Discussion
The comparison between the best tree-based model (Tree-soft) and
the best LTR model (LTR-low) shows that a simple, inherently inter-
pretable model can outperform a complex black-box model, in both
precision- and recall-oriented metrics. Notably, Tree-soft achieves
comparable P@10 and R-prec as high-ranking teams in the 2018
PM track, most of which used sophisticated reranking strategies [7].
This is an encouraging result. It implies that retrieval models do
not need to sacrifice performance in exchange for interpretability
in structured relevance retrieval tasks.

The tree-based approaches offer natural ways of interpreting
their decisions. To explain Tree-hard, one can show the single
decision path it takes to predict relevance. To explain Tree-soft,
one can show k most probable decision paths, each providing an
alternative explanation. Upon close inspection, we found that the
top-3 most probable paths account for 62% of the total probability
across all paths. In other words, while Tree-soft assigns a non-zero
probability to each path, these probabilities tend to be highly skewed
towards only a few.
5 Related Work
Explainable information retrieval. Recent works on explain-
able search and recommendation systems primarily focus on post-
hoc explanation of highly complex ranking algorithms [4, 10, 13],
where explanations are usually feature-based (e.g. highlighting
query terms in search snippets [4]) and example-based (e.g. show-
ing similar items that the user liked [13]). This work differs from
previous works in two ways. First, instead of explaining black-box
models, we design inherently interpretable models. Second, our pro-
posed approach can not only identify important high-level features,
but also show intermediate decision steps.

Precision medicine literature search. This work is inspired
by the TREC Precision Medicine track, where the task is to retrieve
articles for cancer treatment planning. Most participating teams in
this track used the classical IR approach with query expansion to

improve recall and a reranker to refine precision. Some teams use
the official relevance judgement criteria to fine-tune search results,
e.g., filtering out documents that are not related to cancer treatment
[6] or do not match the demographic information in the query [1].
Also, high-performance reranking methods are black-box models
(e.g., deep neural networks [14]), which means the decision logic is
not interpretable. To the best of our knowledge, we are the first to
propose a retrieval model that emulates the structured relevance
judgment process in the PM track, which is interpretable by design.

Professional search strategies. In professional search tasks,
especially systematic literature reviews, searchers formulate struc-
tured information need through complex Boolean queries, where
concepts are encoded as disjunctive clauses of synonymous terms,
and inclusion/exclusion criteria are built on top of these concepts
[2, 9]. Our approach aims to automate and assist in these tasks
by replacing manually constructed query components with classi-
fiers trained using machine learning, and by logically explaining
predictions using relevance aspects.
6 Conclusion and Future Work
In this preliminary work, we demonstrated that simple retrieval
models that resemble a structured relevance judgment process can
outperform strong learning-to-rank baselines, while allowing in-
tuitive explanation. This work inspires many future directions. In
future work, we will 1) evaluate the interpretability of the proposed
approach both empirically and in user studies, 2) improve aspect
classifiers with more features and model options, and 3) explore
more powerful implementations of the initial retrieval stage.
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