
UNC SILS at TREC 2019 Precision Medicine
Track

Jiaming Qu and Yue Wang

School of Information and Library Science
University of North Carolina at Chapel Hill

Chapel Hill, NC
jiaming@ad.unc.edu, wangyue@email.unc.edu

Abstract. This paper describes our participation in the scientific ab-
stract retrieval task of TREC 2019 Precision Medicine Track. Our ap-
proach has two major components. First, we expand the original disease
and gene terms using biomedical knowledge bases to improve recall of
the initial retrieval. We then improve precision by promoting treatment-
related publications to the top using a machine learning reranker trained
on 2017 and 2018 relevance judgments combined. Batch evaluation results
show that the proposed approach effectively improves P@10 compared to
the baseline model.

1 Introduction

TREC Precision Medicine track aims to address an important medical retrieval
problem: given a patient’s disease, gene variation, demographic or other infor-
mation, how to effectively retrieve relevant scientific papers or clinical trials for
physicians to make decisions. This is the third year of the Precision Medicine
track, which consists of two tasks as previous years. Both tasks are about doc-
ument retrieval, but one for scientific abstracts in PubMed/MEDLINE1 and
another for clinical trials in ClinicalsTrial.gov2.

The School of Information and Library Science (SILS) at the University of
North Carolina at Chapel Hill (UNC) participated in the scientific abstract
retrieval task in this year’s PM Track. In this paper, we discuss our strategy to
tackle the problem. In section 2, we provides a general overview of our strategy,
including how to parse and index the documents. In section 3, we demonstrate
in detail our retrieval strategy which consists of a two-direction approach. In
section 4, we report the retrieval performances evaluated by TREC. In section 5,
we summarize our work and propose potential improvements and directions for
future research.

1 https://www.ncbi.nlm.nih.gov/pubmed/
2 https://clinicaltrials.gov/

https://www.ncbi.nlm.nih.gov/pubmed/
https://clinicaltrials.gov/

2 J. Qu and Y. Wang

2 Framework Overview

This year’s scientific abstract retrieval task continues using the MEDLINE corpus
which is a snapshot of PubMed abstracts, but does not include conference papers
as extra corpus as previous years. All the PubMed article abstracts are in XML
files, with rich information such as ID, title, abstract content, author, headings,
journal information, and etc.

2.1 Document processing and Indexing

The first step is to index the corpus, for which we use Apache Lucene3, an
open-source, high-performance and publicly-available searching engine toolkit in
Java. In this task, for each article we only index three fields, as is shown in Table
1. Throughout the whole task, we use the Okapi BM25 4 ranking algorithm which
has been widely used in various industry-level applications. In this paper, we
use Lucene’s default parameter settings of Okapi BM25 (k = 1.25 and b = 0.75).
Check: and standard analyzer with lowercasing and removing English stopwords.

Table 1. Three fields indexed for each scientific paper

Fields Analyzed Stored

Title True True
Abstract True True
ID False True

There are documents with slightly different abstract but the same document
ID (PMID), for a paper is added into the corpus every time after it is revised.
To prevent duplicate document IDs, we simply index a document at the first hit
of its PMID and ignore the later versions.

2.2 Two-stage retrieval framework

Our retrieval framework consists of two major components, namely query ex-
pansion and re-ranking, as is shown in Figure 1. Since the standard number of
retrieved documents for each topic is 1000, we aim to maximize Recall@1000 by
query expansion at the first step, during which we also tune weights of expansion
terms. Then we train a pointwise learning-to-rank model (logistic regression
model) that predicts the probability of a document’s being relevant to the query,
and the probability is used to re-rank the initially retrieved documents. All the
training and parameter tuning are done on the 2017 and 2018 topics, using the
released relevance judgement files with the true relevance grades. On 2019 topics,
we first apply the query expansion module in the initial retrieval stage, and then
rerank the retrieved results using the trained reranker.
3 http://lucene.apache.org/
4 https://en.wikipedia.org/wiki/Okapi_BM25

UNC SILS at TREC 2019 Precision Medicine Track 3

Original	Query

Disease/	Gene
Knowledge

Bases

Query	Expansion	(QE)

Lucene
Indexes

2017/2018
Retrieved	Result

Re-ranker	Training

2017/2018	topics

Original	Query

2019	topics

Expanded	Query Expanded	Query

2019
Retrieved	Result

2017/2018
Relevance
Judgements

Optimal	QE	
Parameters

2019
Re-ranking
Result

Training	 Testing

Re-ranker

QE	Parameter	Tuning

Fig. 1. An overview of the retrieval architecture.

3 Methodology

In this section, we describe our proposed retrieval framework. First we discuss
how we consult external knowledge bases to expand disease and gene terms in the
query to solve the mismatch problem. Then we discuss how we train a relevance
model to further refine the ranking.

3.1 Query Expansion

The goal of query expansion is to use external knowledge bases to expand the
original term which helps the query to match more documents which do not
contain that term. Since both disease and gene information are given regarding
to a patient, we expand both two fields in knowledge bases separately.

4 J. Qu and Y. Wang

Diseases In this task we use a public knowledge base API called Lexigram5. It
contains not only the MeSH ontology, but also other knowledge bases like the
Systematic Nomenclature of Medicine Clinical Terms (SNOMED CT) and the
International Classification of Diseases (ICD). By integrating three professional
knowledge bases together, this knowledge base provides broader and more accurate
terms for disease expansion.

In selecting an appropriate query expansion structure, at first we included as
many expansion terms as possible, but later we found that including a disease’s
“parent” and “children” terms bring too many irrelevant terms into the query.
Therefore, these terms are not included as expansion terms for a disease, and we
only include the preferred term and synonyms of a disease for query expansion.
The table below illustrates how expansion terms for a disease term are different
in two medical knowledge bases (see Table 2).

Table 2. Example of disease expansion terms in two different knowledge bases

Lexigram MeSH

Original Disease Term cholangiocarcinoma cholangiocarcinoma
Preferred Disease Term cholangiocarcinoma of biliary tract cholangiocarcinomas
Synonyms bile duct carcinoma, Intrahepatic Cholangio-

bile duct adenocarcinoma, carcinoma, Extrahepatic
cholangiocellular carcinoma Cholangiocarcinoma

Another reason of using Lexigram is that it can recognize disease terms from
input text and automatically generate expansion terms. However, if using the
MeSH knowledge base, we need to look up the disease first to get a unique
identifier, and then retrieve expansion terms according to that identifier. This
brings a problem that when the disease in the query topic is a rare disease or
does not match the standard disease name in MeSH, the identifier is hard to be
found without human efforts or domain knowledge.

Apart from the preferred term and synonyms, acronyms are also used as
expansion terms in this paper. Consider such a snippet in a paper’s abstract
which is relevant to lung cancer :

“Microarray analyses have revealed significantly elevated expression
of the proto-oncogene ROS1 receptor tyrosine kinase in 20-30% of
non-small cell lung carcinomas (NSCLC). Selective and po-
tent ROS1 kinase inhibitors have recently been developed and onco-
genic rearrangement of ROS1 in NSCLC identified. We performed
immunohistochemical evaluation of expression of ROS1 kinase and
its downstream molecules in 399 NSCLC cases. ROS1 expression
in primary and recurring lesions of 92 recurrent NSCLC cases was
additionally analyzed.”

5 https://www.lexigram.io/

https://www.lexigram.io/

UNC SILS at TREC 2019 Precision Medicine Track 5

In this text, we can see that the disease non-small cell lung carcinomas is only
written in its full name when it appears in the paragraph for the first time, then
it is written in its acronym form NSCLC afterwards for simplicity. This is very
common in biomedical scientific papers that people use short acronyms instead of
full names. For this paper, we use the simple regular expression <Disease Name>
\([A-Z]+\) in the corpus to match a pattern that a disease name is followed by
a capitalized term in parentheses to retrieve acronyms for each disease.

Genes For query expansion of the gene field, we enrich the original gene term
with the genetic dataset provided by the National Center for Biotechnology
Information (NCBI)6. We simply include the aliases for each gene term by
looking it up in the dataset (see Table 3).

Table 3. Example of gene expansion terms in the NCBI gene list

NCBI Gene List

Original Gene Term KRAS
Aliases C-K-RAS|CFC2|K-RAS2A|K-RAS2B|K-RAS4A|K-RAS4B

K-Ras|KI-RAS|KRAS1|KRAS2|NS|NS3|RALD|c-Ki-ras2

To summarize, for each query topic the disease term is expanded to its
preferred term, acronym and synonyms, and the gene term is expanded to its
aliases. This helps enriching the information in the original query and matching
those potentially relevant documents which do not mention the raw query terms
but terms referring to the same disease or gene. We then tune grid search? the
weights of expanded terms on the 2017 and 2018 topics to optimize R@1000, and
the result is shown in Table 4.

Table 4. Weights for each expanded term group

Field Query Term Weight

Diseases Original Disease Term 1
Disease Preferred Term 0.1
Disease Synonyms 0.1
Disease Acronyms 0.5

Genes Original Gene Term 1
Gene Aliases 0.3

6 ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/

6 J. Qu and Y. Wang

Overall Query Structure For each topic, we expand the query in terms of
disease and gene, and other fields are not used in this paper. After these two
fields are expanded in knowledge bases, weights are assigned to each term. We
use the OR operator between all the terms, because it is impossible for a paper
to contain all the query terms after expansion. We use the SHOULD operator
for the title field and the MUST operator for the content field, which means it
is not required for a document to match the query in its title but required to
match the query in its content.

3.2 Re-ranking

After expanding the original query to optimize R@1000, we aim to refine the
ranking by pushing the most relevant documents to the top. We first explore
a heuristic approach, and then discuss features to train a logistic regression
classifier. The training step is done on the 2017 and 2018 data.

A Heuristic Approach Before starting training the reranker which helps to
judge how much a document is relevant to the PM topics, we explore a heuristic
approach to re-rank the retrieved results.

By exploring the title and content of top 10 retrieved results after the query
expansion, we notice that almost all the relevant articles have the disease term in
the title and most of the non-relevant articles do not. Therefore, we hypothesize
that a relevant article should have the disease term in the title, otherwise it
should be penalized to a lower relevance score. Based on this idea, we explore
a heuristic approach of punishing those articles without the disease term by
multiplying their original scores with a penalty factor between 0 to 1.

Based on the 2017 and 2018 data, we heuristically set the penalty factor to
0.6, and the performance of this retrieval shown in Section 4 proves that simple
as this heuristic approach is, it does help to push relevant documents upwards
and to improve P@10.

Learning to Rank The heuristic approach is the starting point of re-ranking
the retrieved result to enhance P@10. However, this approach is based on human
efforts of reading and exploring the results, therefore, we aim to leverage the
pointwise learning-to-rank idea and machine learning techniques to learn a ranker
which can automatically tell whether a paper is relevant to the PM track or
not. According to the PM track overview [1], an article which is identified as
relevant to the PM track should focus on treatments. Thus, we hypothesize
that a relevant article should cover more words related to treatments instead of
laboratory experiments. Also, in this year the treatments of each article are also
extracted and provided as a new resource, and we include the count of treatments
as a feature.

Table 5 lists query-document features and document-specific features used
in the ranker. The features of whether the disease term appears in the title is
categorical, and all the other features are numerical as we simply count the term

UNC SILS at TREC 2019 Precision Medicine Track 7

frequency of each keywords. We choose high-level features instead of pure word
features from the bag-of-words model because such features would be too sparse
to have a good performance.

Table 5. Features in the learning-to-rank model

Feature Description Data Type

Whether the disease name in the query appears in the title Categorical
Number of positive keywords in the title Numerical
Number of positive keywords in the abstract Numerical
Number of negative keywords in the title Numerical
Number of negative keywords in the abstract Numerical
Number of unique treatments in the article Numerical

The next step is to generate the positive keywords and negative keywords.
Oleynik et al. use the Latent Dirichlet Allocation model to do Topic Modeling
among the relevant articles and non-relevant articles to find positive and negative
keywords [2]. These keywords are supposed to have the strongest indication of
two labels. The lists of positive and negative keywords are shown in Table 6.

Table 6. Positive, negative and heading keywords

Positive Keywords treatment, survival, prognostic, clinical, prognosis, therapy
outcome, resistance, targets, therapeutic, immunotherapy

Negative Keywords pathogenesis, tumor, development, model, tissue, mouse
specific, staining, dna, case, combinations

3.3 Ranker Construction

We train a Logistic Regression model to predict the probability that a document
is relevant to the PM track using the scikit-learn7 library. For each retrieved
article, the feature vector is generated based on the feature table above and the
probability of a positive (relevant) label is predicted using the model.

We use both the predicted probability of how relevant an article is to the PM
track and the raw BM25 score for re-ranking. However, since the probability is a
number between 0 to 1 and the raw score could be as large as 70, we should keep
them at the same scale. Therefore, we do the min-max transformation on both
scores and they are scaled to a number between 0 to 1. Then for each article, a
new score is generated by adding up the raw BM25 score and the probability
from the classifier, and is used for re-ranking.
7 https://scikit-learn.org/

8 J. Qu and Y. Wang

However, in experiments we find that applying the reranker to all the 1000
results do not improve the precision, but hurt the performance instead. We
suppose that it is because the positive instances in the training set merely come
from past teams’ top retrieved results, which are much fewer than the negative
instances. Thus, the ad-hoc relevance judgment by experts are only applied on
documents which rank at top in each team’s submitted results, which leads to
a different distribution of instances in the training and testing set. Therefore,
instead of applying the reranker on all the 1000 retrieved documents to do re-
ranking, we only re-rank the top 50 documents, after testing different top K
documents to re-rank by optimizing P@10 on the 2017 and 2018 topics.

In summary, we train the reranker on the 2017 and 2018 topics and find that
the optimal number to re-rank is 50. When we run queries from the 2019 topics,
we follow the heuristic approach first, i.e., we punish a document which does not
mention the disease term in its title by multiplying its raw score by a penalty
factor of 0.6, based on which the results are re-ranked for the first time. We then
transform the raw BM25 scores using a min-max scaler to a number between 0
and 1. Afterwards, we only input the top 50 documents into the reranker and add
up the BM25 score and probability. Based on new scores, the re-ranking is done
for the second time and a final ranked list is returned for relevance judgment.

4 Evaluation

We submit 4 runs for the scientific abstract retrieval task and the evaluation
results are summarized in the table below.

Table 7. Evaluation Results

Run Name P@10 R-prec infNDCG

sils_run1 0.5225 0.2858 0.4490
sils_run2 0.5925 0.2805 0.4692
sils_run3 0.5925 0.2757 0.4620
sils_run4 0.5900 0.2757 0.4625

sils_run1 is the baseline which does not re-rank the results after retrieval.
This run expands the query and returns a ranked list from Lucene according to
BM25 relevance scores.

sils_run2 adds the heuristic re-ranking on the baseline.
sils_run3 adds the trained re-ranker on the baseline, with features of

“Whether the disease name appears in the title”, “Count of positive/negative
keywords in title/abstract”.

sils_run4 adds the trained re-ranker on the baseline, compared to sils_run3 ,
this run has one more feature of “count of unique treatments” in the classifier.

By comparing sils_run1 and sils_run2 or sils_run3 , we could see that
re-ranking improves P@10 by pushing the most relevant documents to the top.

UNC SILS at TREC 2019 Precision Medicine Track 9

However, by comparing sils_run2 and sils_run3 , we could see that P@10
does not differ too much from the heuristic approach or the learning-to-rank
approach. Finally, by comparing sils_run3 and sils_run4 , we could see that
adding the new feature in 2019 does not help too much.

5 Conclusion

We participate in the 2019 Precision Medicine track and submit 4 runs for the
scientific abstract retrieval task. Our best run incorporates two steps, which are
query expansion and re-ranking. We expand disease and gene query terms by
knowledge bases to improve recall, then train a Logistic Regression classifier
to predict how much an article is relevant, based on which we re-rank the
retrieval results. Results show that the proposed approach effectively improves
the performance in terms of P@10 compared to the baseline model.

This work opens up interesting questions for future studies. In terms of
learning-to-rank models, one could explore richer features (ranking scores pro-
duced by different relevance models) and more expressive function family (en-
sembles such as gradient boosted trees). It would also be interesting to study the
actual information need of oncologists. For instance, it would be interesting to
study if PM searches are mostly high-precision tasks (as indicated by the name
precision medicine), or high-recall tasks (more like a systematic literature review
of relevant treatments), or the recall levels being case-specific. A system that’s
aware of the desired level of recall would make informed decision in presenting
(whether ranking or selecting) documents.

References

1. Kirk Roberts, Dina Demner-Fushman, Ellen M Voorhees, William R Hersh, Steven
Bedrick, Alexander J Lazar, and Shubham Pant. Overview of the trec 2017 precision
medicine track.

2. Michel Oleynik, Erik Faessler, Ariane Morassi Sasso, Arpita Kappattanavr, Benjamin
Bergner, Harry Freitas Da Cruz, Jan-Philipp Sachs, Suparno Datta, and Erwin
Böttinger. Hpi-dhc at trec 2018 precision medicine track. 2018.

	UNC SILS at TREC 2019 Precision Medicine Track

